ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ВЕКТОРНЫЕ АНАЛИЗАТОРЫ ЦЕПЕЙ

Р4226/Р4213 «ПАНОРАМА»

ИЗМЕРЕНИЕ ЧАСТОТНО-ПРЕОБРАЗУЮЩИХ УСТРОЙСТВ

Измерение частотно-преобразующих устройств

Программное обеспечение векторного анализатора цепей (ВАЦ) серии Р4213 \ Р4226 «Панорама» предоставляет пользователю возможность проводить такие измерения как:

- измерение умножителей частоты (требуется опция «СЧП»);
- измерение смесителей со скалярной калибровкой (требуется опция «СЧП»);
- измерение смесителей с векторной калибровкой (требуется опция «СПА»).

При измерении частотно-преобразующих устройств исследуемое устройство должно подключаться выходом ко второму порту ВАЦ.

Опция «СЧП» – смещение частоты приёмника, позволяет проводить измерение скалярного коэффициента преобразования SC₂₁, мощности на частотах, отличных от частоты зондирования. Возможность раздельного управления частотой зондирования и частотой приёмника, позволяет проводить измерения смесителей со скалярной калибровкой, умножителей частоты, анализировать уровень гармоник исследуемых устройств.

Опция «СПА» – переключатель опорного канала, совместно с опцией «ДПА» (прямой доступ к приёмникам), позволяет проводить измерения комплексного коэффициента преобразования С₂₁, и комплексных коэффициентов отражения от исследуемых устройств.

Ниже приведены параметры, которые позволяет измерять ВАЦ «Панорама»:

- S₁₁(f₁) комплексный коэффициент отражения на частоте зондирования f₁ при зондировании портом 1 на частоте f₁;
- S₂₁(f₁) комплексный коэффициент передачи на частоте зондирования f₁ при зондировании портом 1 на частоте f₁;
- S₁₂(f₂) комплексный коэффициент передачи на частоте зондирования f₂ при зондировании портом 2 на частоте f₂;
- S₂₂(f₂) комплексный коэффициент отражения на частоте зондирования f₂ при зондировании портом 2 на частоте f₂;
- b2c(f₂) мощность измерительного приёмника второго порта, измеренная на частоте f₂ при зондировании портом 1 на частоте f₁;
- SC₂₁ скалярный коэффициент преобразования, вычисляется как отношение b2C(f₂) к мощности, поступающей на исследуемое устройство на частоте f₁;
- С₂₁ комплексный коэффициент преобразования (необходимо проведение векторной калибровки, наличие опции «СПА»);
- ГВЗ групповое время запаздывания (необходимо проведение векторной калибровки).

Измерение умножителей частоты

Умножитель частоты – устройство, в котором на вход подается сигнал с частотой f_1 , а на выходе формируется сигнал с частотой $f_2 = N \cdot f_1$, где N – это целое число.

Схемы измерения умножителей частоты

Рис. 1а. Схема измерения умножителей частоты с помощью ВАЦ «Панорама»

Рис. 16. Схема измерения умножителей частоты с дополнительным усилением зондирующего сигнала

Рис. 1в. Схема измерения умножителей частоты с дополнительным усилением/ослаблением сигнала с возможностью измерения коэффициентов отражения: 1 – усилитель; 2 – умножитель частоты.

Параметры, которые схемы позволяют измерить: SC₂₁; b2c; S₁₁ (для схем на рис. 1а и 1в); S₂₂; коэффициент преобразования на 1, 2, 3...N гармониках зондирующего сигнала.

Устройства и опции, необходимые для проведения измерения: ВАЦ «Панорама» с опцией «СЧП» (с опцией «ДПА» для схемы, рис. 1в); измеритель мощности; набор калибровочных мер или электронный калибратор; кабельные сборки.

Калибровки, необходимые для проведения измерения: две однопортовые калибровки S-параметров; калибровка выходной мощности первого порта; калибровка приёмника второго порта, если измеряемое устройство не подключено напрямую к порту.

Схема на рис. 16 не позволяет измерить коэффициент отражения S₁₁ так как в схеме используется усилитель, который значительно ослабляет сигнал, отраженный от входного порта умножителя за счет развязки.

Опция «ДПА» предоставляет пользователю прямой доступ к СВЧ-входам приемников и СВЧ-выходам генератора.

ПРИМЕЧАНИЕ Применяя схему измерения на рис. 1в, необходимо помнить о том, что приёмники ВАЦ должны находиться в линейном режиме работы и при необходимости устанавливать аттенюаторы.

Измерение коэффициента преобразования умножителя

Пример 1.

Проведем измерение коэффициента преобразования (**SC**₂₁) и коэффициента отражения от первого порта (**S**₁₁) умножителя частоты «MD701» производства компании «Микран». Частотный диапазон входного сигнала (RF) = 6...13 ГГц, выходного сигнала (f₂) = 12...26 ГГц. Мощность зондирования 15 дБм. Технические характеристики устройства приведены в таблице 1.

Таблица 1. Характеристики умножителя частоты «MD701»

	Р _{вх} = 10 дБм	Р _{вх} = 12 дБм	Р _{вх} = 15 дБм
Диапазон входных частот, ГГц		613	
Диапазон выходных частот, ГГц		1226	
Потери преобразования, дБ	16	14	12

Исходя из данных в таблице 1, необходимо обеспечить уровень входного сигнала 15 дБм, чтобы добиться наименьших потерь преобразования. ВАЦ «Панорама» не может обеспечить необходимый уровень сигнала, значит необходимо использовать дополнительный усилитель. В качестве дополнительного усилителя используем «LNA 20» производства компании «Микран», коэффициент усиления (КУ) = 25 дБ, частотный диапазон работы усилителя 10 МГц...26,5 ГГц.

Для измерения коэффициента отражения от входного порта умножителя необходимо использовать ВАЦ «Панорама» с опцией «ДПА», т.к. необходим прямой доступ к тракту генератора ВАЦ. Усилитель необходимо установить между портами «Генератор выход» и «Генератор вход». Схема для измерения представлена на рис. 2.

Рис. 2. Схема измерения умножителя «MD701» с усилением зондирующего сигнала: 1) умножитель «MD701»; 2) усилитель «LNA 20».

- 1. Подготовьте ВАЦ к работе;
- 2. Запустить программное обеспечение Graphit;
- 3. Осуществить подключение к прибору (рис. 3);

Описание	Адрес прибора	Тип	Серийный номер	Состояние	- Busénsuuss
P4M-18/3 1102170230	r4m-18-1102170230.tetz	P4M-18/3	1102170230	Свободен	В изоранное
P4M-18 1102080016	r4m-18-1102080016.tetz	P4M-18	1102080016	Занят	
P4M-18 1102099999	r4m-18-1102099999.tetz	P4M-18	1102099999	Занят	
P4213/4 1132190048	r4213-1132190048.tetz	P4213/4	1132190048 1132190055	Занят	Повторить поиск
P4213/6 1132190055	r4213-1132190055.tetz	P4213/6		Занят	
P4226/5 1133180038	r4226-1133180038.tetz	P4226/5	1133180038	Свободен	Все приборы
P4226A 1133190021	r4226-1133190021.tetz	P4226A	1133190021	Свободен	
R4226 1133150001	r4226-1133150001.tetz	R4226	1133150001	Занят	
	Выберите прибор для подключи или перетащите запись в списо избранных приборов при помо			Подключаться по умолчанию	

Рис. 3. Подключение к ВАЦ

4. Сбросить настройки программного обеспечения Graphit по умолчанию, для этого нажать кнопку

«Восстановить начальные параметры»

5. В панели управления «Мощность» установить параметры мощности зондирования — 10 дБм, т.к. используется усилитель с КУ = 25 дБ (рис. 4).

ПРИМЕЧАНИЕ При установке мощности зондирования необходимо учитывать, что приёмники ВАЦ должны находиться в линейном режиме работы и устанавливать внутренние / внешние аттенюаторы.

рма	ощность
Старт	
Стоп	
Центр	-10 дБм
Полоса	
Точек	
Управление аттенюат ручное	орами 🗸
Аттенюатор генерато	ра (порт 1 / 2)
0 дБ	0 дБ
Аттенюаторы приёмни	иков (порт 1 / 2)
0 дБ	0 дБ

Рис. 4. Установка мощности зондирования

Информация может быть изменена без предварительного уведомления.

6. Установить частотный диапазон для калибровки выходной мощности ВАЦ. **Частотный диапазон при калибровке должен включать в себя весь частотный диапазон работы умножителя**. В нашем примере диапазон калибровки 6...26 ГГц (рис. 5).

f часто	та
Старт	<u>6 ГГц</u>
Стоп	26 ГГц
Центр	16 ГГц
Полоса	20 ГГц
Точек	501
Сканирование по списку	Список
Полный об	зор
Нулевой об	зор

Рис. 5. Установка частотного диапазона для калибровки выходной мощности

7. Собрать схему для проведения калибровки выходной мощности (рис. 6). В качестве эталонного измерителя мощности используем «PLS26» производства компании «Микран».

© 1] микран	ПАНОРАМА Анализатор целей векторный Р4226 10 МИС 265 БИС	0
		NOPT 2
		A Trace and
	2 3 Измеритель мощности	

Рис. 6. Схема для калибровки выходной мощности ВАЦ: 1) ВАЦ «Панорама»; 2) эталонный измеритель мощности «PLS26»; 3) усилитель «LNA20».

8. Выбрать в главном меню Калибровка -> Калибровка мощности -> Коррекция выходной мощности. В окне «Коррекция выходной мощности», в разделе «Измеритель мощности» нажать кнопку «Подключить». Выбрать необходимый измеритель мощности из списка. Смещение задать равным КУ усилителя, используемого в схеме (в нашем примере 25 дБ). Если в схеме не используется усилитель смещение задать равным нулю. Нажать кнопку «Калибровка», дождаться окончания калибровки (рис. 7). После проведения калибровки выходная мощность ВАЦ будет скорректирована с учетом КУ используемого усилителя.

<u>Ф</u> айл	<u>К</u> алибровка	<u>У</u> правление	Диаграмма	Трасса	Маркер	Профиль	<u>В</u> ид	<u>С</u> правка	
	浄 <u>М</u> астер	калибровки		F6	•	Измерение	-	\$P \$	1
	<u>О</u> тключи Калибро	нть коррекцию вка мошности		•	Коррек	шия выходн	ой мо	шности	1

Параметры выходной моц	цности		Измеритель мощности
	TIOPT 1	TIOPT 2	Статус: подключен
Значение на выходе:	15 дБм 🔺	-10 дБм 🔺 >	Информация: Micran, PLS26, 1131190099, В. 6.0
Смещение:	25 дБ 🔶 🕨	0 дБ 🔹 🕨	
Коррекция:	Включена	Включена	
3	Калибровка	Калибровка	2
Допустимое отклонение	мощности:	0,5 дБ 🔹 🕨	Отключить

Рис. 7. Проведение калибровки выходной мощности ВАЦ

 Соединить порты ВАЦ между собой. Провести калибровку приёмника второго порта в выходном частотном диапазоне умножителя (12...26 ГГц). Выбрать в главном меню Калибровка -> Калибровка мощности -> Коррекция приёмников. В окне «Коррекция приёмников» нажать кнопку «Калибровка». Дождаться окончания калибровки (рис. 8).

Рис. 8. Проведение калибровки приёмника второго порта ВАЦ

10. Выбрать в главном меню *Калибровка -> Мастер калибровки*. Провести однопортовую SOLT калибровку первого порта **во входном диапазоне рабочих частот умножителя**, следуя указаниям мастера калибровки, рис. 9.

аил	<u>К</u> алибровка	<u>У</u> правление	Диаграмма Трасс	
	洛 <u>М</u> астер	калибровки	F6	
-	Отключ	ить коррекцию		
Лсполь	ьзуемые порты			
🗇 пор	оты 1, 2		🔘 порт 1	🔘 порт 2
Конфи	гурация портов	исследуемого у	стройства	
	Соединител	њ:	Калибровочный набор:	Описание набора:
Порт 1	L: 3,5/SMA ви	лка 💌	HKMM-13-13P Nº21960905	535 Соединители тип 3,5 мм
Порт 2	3,5/SMA ви	лка 💌	HKMM-13-13P Nº21960905	535 Соединители тип 3,5 мм
			100 million	
R) Illar 1 и	3.3	Список калибровочн	ных наборов
Ş	⁾ Шаг1и	з 3	Список калибровочн	ных наборов
орт 1 х) Шаг 1 и	з 3	Список калибровочн	ных наборов
орт 1 - Х - К) Шаг 1 и	з 3	Список калибровочн	ных наборов
орт 1 К С) Шаг 1 и	з 3	Список калибровочн	ных наборов
OPT 1 X) Шаг 1 и х зн	з 3	Список калибровочн	ных наборов
орт 1 К С) Шаг 1 и х з н Подклю	з 3	Список калибровочн (в)» (№2251090535) на п	ных наборов
орт 1 - Х - К) Шаг 1 и	з 3 чите нагрузку «	Список калибровочн XX (в)» (№2251090535) на п	ных наборов
OPT 1 X) Шаг 1 и х з н Подклю	з 3 чите нагрузку «	Список калибровочн XX (в)» (№2251090535) на п	ных наборов

Рис. 9. SOLT калибровка первого порта

11. Выбрать в главном меню Калибровка -> Мастер калибровки. Провести однопортовую SOLT калибровку второго порта в выходном диапазоне рабочих частот умножителя, следуя указаниям мастера калибровки, рис. 10.

ил <u>К</u>	(алибровка	<u>У</u> правление	Диаграмма	Tpacc		
<u>a</u> 2	Мастер и Мастер и	калибровки	(F6		
-	<u>О</u> тключи	ть коррекци	ю	L		
1спользу	уемые порты					
опорты	ol 1, 2		🔘 порт 1		Опо	рт 2
Сонфигу	рация портов	исследуемого	устройства			
	Соединител	ь:	Калибровочнь	ый набор:		Описание набора:
юрт 1:	3,5/SMA вил	ка 💌	HKMM-13-13P	Nº2196090535	•	Соединители тип 3,5 мм
						100
1орт 2:	3,5/SMA вил	ка 🔻	HKMM-13-13P	Nº2196090535		Соединители тип 3,5 мм
Юрт 2:	3,5/SMA вил Шаг 1 из	ка • з 3	НКММ-13-13Р	№2196090535 калибровочных набор	008	Соединители тип 3,5 м
юрт 2:	3,5/SMA вил Шаг 1 и:	ка • з 3	НКММ-13-13Р	№2196090535 калибровочных набо;	008	Соединители тип 3,5 м
Торт 2:	3,5/SMA вил Шаг 1 и:	_{ка} –	НКММ-13-13Р	№2196090535 калибровочных набо;	008	Соединители тип 3,5 м
Торт 2:	3,5/SMA вил	ĸa ▼ 3 3	НКММ-13-13Р	№2196090535 калибровочных набор	008	Соединители тип 3,5 м
Торт 2:	3,5/SMA вил	ĸa ▼ 3 3	НКММ-13-13Р Список и	№2196090535 калибровочных набор	V08	Соединители тип 3,5 м
орт 2	3,5/SMA вил Шаг 1 и: Подключ	ка •	НКММ-13-13Р Список № «XX (в)» (№2251	№2196090535 калибровочных набор 090535) на порт 2.		Соединители тип 3,5 м

Рис. 10. SOLT калибровка второго порта

12. В панели управления «Преобразование частоты» установить множитель частоты в соответствии с коэффициентом умножения исследуемого умножителя по формуле, приведенной ниже.

$$f_2 = \frac{a}{b}f_1 + \frac{c}{d}f_{\Gamma} + f_{\rm CM}$$

где f₁ – частота зондирующего сигнала и приёмников первого порта;

f₂ – частота зондирующего сигнала и приёмников второго порта;

 f_r – частота гетеродина (при отсутствии внешнего гетеродина множитель «с» задается равным нулю;

f_{см} – смещение частоты, представляющее дополнительную отстройку;

- а множитель частоты первого порта;
- **b** делитель частоты второго порта;
- с множитель частоты гетеродина;
- d делитель частоты гетеродина.

В случае измерения умножителей частоты, которые характеризуются формулой $f_2 = N \cdot f_1$, коэффициент a – является множителем N для f_1 . Изменяя коэффициент a можно измерить уровень прохождения 2, 3, 4 и т.д. гармоник через умножитель. При измерении не используется гетеродин, множитель частоты гетеродина c устанавливается равным нулю. Дополнительное смещение так же не задается, $f_{cm} = 0$.

В нашем примере коэффициент умножения равен 2, гетеродин не используется, рис. 11.

Преобразование	
	вкл
Векторная коррекция	
	Выкл
Множитель/делитель част	оты Р4
2	1
Старт гетеродина	
	0 Гц
Стоп гетеродина	
	0 Гц
Множитель/делитель част	оты гетеродина
0	1
Смещение	
	0 Гц
Старт/стоп ПЧ	
12 554	26 FFu

Рис. 11. Настройка преобразования частоты

13. Создать измерительную трассу для коэффициента преобразования SC₂₁, рис. 12.

<u>⊅</u> айл <u>К</u> али	ибровка	Управление Диагра	амма <u>Т</u> расса <u>М</u> арк	кер Профиль	<u>В</u> ид <u>С</u> правка								
	è 👍 '	술 🕜 🛛 м	одуль КП [дБ] 🛛 👻	SC21	- 🎾 %	0		•					
•	СВЧ	A 1	2 👫 5% 🛛	*** • 🔊	😂 S2 S	4 🕅	٠						
Имя	Тип	Кнл/Изм. Опоря	н. Ед./дел. П Ф	Формат	Функции						>:	>	
V Tpc1	И	SC21 0 дБ	Автомасштаб	Молиль КП. дБ] А							Преобразован	ие частоты	ŝ
о дБм			Запомнить	Ctrl+R				-			Преобразование		f
10 KFL 40	0 -		удалить	Del				*	Автомасштао диаграммы Сtri+ Создать измерительную трассу	Ctrl+N	Векторная коррекция	ВКЛ	p
30	0		<u>И</u> змерение Формат	•	<u>S</u> 11 S <u>2</u> 1			编 100	Создать <u>м</u> атематическую трассу <u>В</u> ыделить все трассы	Ctrl+M Ctrl+A	Множитель/делитель част	выкл	Q
20	0		А Усреднение	•	S <u>1</u> 2 S22				Маркеры	•	2	1	O
10	0		 Фазовая задер Фильтрация Впоношило обс 	ржка	Приёмники	-		**	<u>О</u> тчет <u>О</u> ткрыть данные	Ctrl+P Ctrl+Y	Старт гетеродина	0 Гц	M
¢	0		 Временная области в ременная облас 		Проводимость		(21	맴	<u>С</u> охранить данные <u>П</u> ериодическое сохранение SnP файло	Ctrl+T	Стоп гетеродина	0 Гц	MA
-11	0		Ограничение		Измерение шума	• •	<u>S</u> C21 <u>a</u> 1c (1->2)		Создать диаграмму Закрыть диаграмму		Множитель/делитель част О	оты гетеродина 1	₩¢
-21	0						<u>b</u> 1c (1->2)	8	Расположение диаграмм		Смещение		4
							a2 <u>c</u> (1->2) b2c (1->2)			8	Company (strained Bill)	0 Гц	\otimes
-3	0-					_					12 ГГц	26 ГГц	P
-4	0							-			Отображать частоты приёмника		MAX.
12	ГГЦ		F->[F*] 501		19 ГГ	u.			14 rru	26 ГГц			Ø
4226/3 11331	180005	r4226-1133180005.tetz	Подключен	ОГ ВНУТР	C/BX -	3	С/ВЫХ -	T=37°	С 139 мс				

Рис. 12. Создание измерительной трассы для коэффициента преобразования SC21

14. В панели управления «Преобразование частоты» можно задавать отображаемый диапазон частот путем выбора в окне «Отображать частоты». Измерение S₁₁ проводим во входном частотном диапазоне работы умножителя (6...13 ГГц), отображаем частоту зондирования, а S₂₂ и SC₂₁ в выходном частотном диапазоне работы умножителя (12...26 ГГц), отображаем частоты приёмника. Результат измерения приведен на рис. 13 и рис. 14.

микран				MD70	1					26.09.2019 15:16:32		
226/3 1133180005, Graphit 2.5.27 701												
01 Трс3_П1	SC21	Модуль КП [дБ]	Оп 4 дБ	3 дБ/	дел	Поз 5	Tpc3 [14	:52:42, 26.0	09.2019] Cr.		
Tpc4_I1	\$22	Ампл лог [д	6]	Оп 4 дБ	3 дБ/	дел	Поз 5	Tpc4 [14	52:46, 26.0	09.2019] Cr.		
			1 1	1	11	1				1		
16									-			
1 13		~~~~~							-			
10						~~~~						
4												
1												
-2										-		
-5-										-		
.8												
	2	3	4	5	6	7		8	9	10		
12 ГГц 🔲	n na h é ta na sina	F->[F*] 501		19 FFu			14 FFu		le le le le che de c	20		

Маркеры	1	2	3	4	5	6	7	8	9	10
Позиция	13,000000 ГГц	14,000000 ГГц	16,000000 ГГц	17,000000 ГГц	19,000000 ГГц	20,000000 ГГц	21,000000 ГГц	23,000000 ГГц	24,000000 ГГц	25,000000 ГГц
Трс3_П1	13,273 дБ (!)	13,592 дБ (!)	12,399 дБ (!)	12,847 дБ (!)	11,325 дБ	11,329 дБ (!)	11,658 дБ (!)	11,813 дБ (!)	10,802 дБ (!)	10,044 дБ (!)
Трс4_П1	-3,190 дБ (!)	-3,702 дБ (!)	-2,695 дБ (!)	-5,142 дБ (!)	-4,714 дБ	-4,467 дБ (!)	-3,831 дБ (!)	-3,643 дБ (!)	-3,731 дБ (!)	-3,711 дБ (!)

Рис. 13. Результаты измерения. Коэффициент преобразования SC21, коэффициент отражения S22.

Рис. 14. Результаты измерения. Коэффициент отражения S₁₁.

Измерение смесителей

Векторный анализатор цепей (ВАЦ) Р4226А «Панорама» позволяет проводить измерение коэффициента преобразования смесителей со скалярной и векторной калибровкой.

При измерении смесителей необходимо использовать внешний генератор сигнала гетеродина. Необходимо соединить входы и выходы синхронизации генератора и ВАЦ для синхронной перестройки по частоте, рис 15. Также необходимо соединить выход опорного сигнала генератора и вход опорного сигнала ВАЦ.

ПРИМЕЧАНИЕ Использование общей опорной частоты ВАЦ и генератора является обязательным условием для корректных измерений.

Рис. 15. Синхронизация ВАЦ и гетеродина

В качестве генератора сигнала гетеродина в данной инструкции используются приборы производства компании «Микран» серии «Г7М», «PLG», «P2M».

Схемы измерения смесителей со скалярной калибровкой

Рис. 16б. Схема измерения смесителей с использованием внешнего гетеродина со скалярной калибровкой, дополнительным усилением зондирующего сигнала: 1) смеситель; 2) генератор сигнала гетеродина; 3) усилитель.

Рис. 16в. Схема измерения смесителей с использованием внешнего гетеродина со скалярной калибровкой, дополнительным усилением зондирующего сигнала с возможностью измерения коэффициента отражения: 1) усилитель; 2) смеситель; 3) генератор сигнала гетеродина.

Параметры, которые схема позволяет измерить: SC₂₁; b2c; S₂₂; коэффициент преобразования на произвольной ПЧ; S₁₁, S₁₂, S₂₁, для схем на рис. 16а и 16в.

Устройства и опции, необходимые для проведения измерения: ВАЦ «Панорама» с опцией «СЧП» (с опцией «ДПА» для схемы на рис. 16в); измеритель мощности; калибровочный набор или электронный калибратор; кабельные сборки.

Калибровки, необходимые для проведения измерения: двухпортовая калибровка S-параметров; калибровка выходной мощности первого порта; калибровка приёмника второго порта, если измеряемое устройство не подключено напрямую к порту.

Схема на рис. 16б не позволяет измерить коэффициент отражения S₁₁ так как в схеме используется усилитель, который значительно ослабляет сигнал, отраженный от входного порта умножителя за счет развязки.

Опция «ДПА» предоставляет пользователю прямой доступ к СВЧ-входам приемников и СВЧ – выходам генератора.

<u>ПРИМЕЧАНИЕ</u> Применяя схему измерения на рис. 16в, необходимо помнить о том, что приёмники ВАЦ должны находиться в линейном режиме работы и при необходимости устанавливать аттенюаторы. Подробнее об уровнях входного сигнала можно узнать в инструкции по применению ВАЦ Р4212/Р4226 «Панорама» Опция «ДПА», которую можно скачать на сайте www.micran.ru.

Пример 2.

Проведем измерение коэффициента преобразования SC₂₁, коэффициенты отражения S₁₁, S₂₂, развязку S₂₁ смесителя «MD621» производства компании «Микран» со скалярной калибровкой. Характеристики устройства приведены в таблице 2. Частотный диапазон входного сигнала (**RF**) = 3,05...20 ГГц, сигнала гетеродина (**LO**) = 3...19,95 ГГц, промежуточная частота (**IF**) = 50 МГц. Мощность зондирования 0 дБм.

Таблица 2. Технические характеристики смесителя «MD621»

Диапазон частот, ГГц	36	610	1017	1726
Потери преобразования, CL *, дБ	13	8	10	13
Сжатие на 1 дБ по входу, Р1 *, дБм	10	12	12	13
Интермодуляция третьего порядка, IIP3 **, дБм	20	16	20	22
Возвратные потери по входу RF, RL _{RF} *, дБ	5	6	6	5
Возвратные потери по входу LO, RL _{LO} *, дБ	5	6	5	5
Изоляция LO-RF, дБн	35	35	35	30
Изоляция RF-IF, дБн	15	20	20	20
Изоляция LO-IF, дБн	18	20	25	25

Для измерения параметров смесителя будем использовать схему, приведенную на рис. 17.

Рис. 17. Схема измерения смесителя «MD621» со скалярной калибровкой: 1) смеситель «MD621»; 2) генератор сигнала гетеродина.

В качестве источника сигнала гетеродина и эталонного измерителя мощности используем синтезатор частот серии «Г7М-20» и измеритель мощности «PLS26» производства компании «Микран» соответственно.

- 1. Подготовить ВАЦ к работе;
- 2. Запустить программное обеспечение Graphit;
- 3. Осуществить подключение к прибору, рис. 18;

Описание	Адрес прибора	Тип	Серийный номер	Состояние	- D.uz6nzuuzz		
P4M-18/3 1102170230	r4m-18-1102170230.tetz	P4M-18/3	1102170230	Свободен	В изоранное		
P4M-18 1102080016	r4m-18-1102080016.tetz	P4M-18	1102080016	Занят			
P4M-18 1102099999	r4m-18-1102099999.tetz	P4M-18	1102099999	Занят			
P4213/4 1132190048	r4213-1132190048.tetz	P4213/4	1132190048	Занят	Повторить поиск		
P4213/6 1132190055	r4213-1132190055.tetz	P4213/6	1132190055	Занят			
P4226/5 1133180038	r4226-1133180038.tetz	P4226/5	1133180038	Свободен	Все приборы		
P4226A 1133190021	r4226-1133190021.tetz	P4226A	1133190021	Свободен			
R4226 1133150001	r4226-1133150001.tetz	R4226	1133150001	Занят	<u> </u>		
Выберите прибор для подключения или перетащите запись в список избранных приборов при помощи мыц		ения к щи мыши			Подключаться по умолчании		

Рис. 18. Подключение к ВАЦ

- 4. Сбросить настройки программного обеспечения Graphit по умолчанию, для этого нажать кнопку «Восстановить начальные параметры»
- 5. В панели управления «Мощность» установить параметры мощности зондирования 0 дБм, рис. 19;

р мощн	ость
Старт	f
Стоп	p
Центр	
	0 дБм
Полоса	Ш
Точек	MA
Управление аттенюаторам	м
ручное Аттенюатор генератора (г	торт 1 / 2)
0 дБ	0 дБ
Аттенюаторы приёмников	(порт 1 / 2)
0 дБ	0 дБ

Рис. 19. Установка мощности зондирования для измерения смесителя «MD621»

6. Выбрать в главном меню *Калибровка -> Мастер калибровки*. Провести двухпортовую SOLT калибровку в частотном диапазоне, **включающем в себя весь рабочий диапазон смесителя**, рис. 20. В нашем случае частотный диапазон для проведения калибровки 50 МГц...20 ГГц;

			🕞 Р4. Векторный анализатор цепей [Emulator] - Graphit 2.5	
C		6	Файл <u>К</u> алибровка <u>У</u> правление Диаграмма <u>Т</u> расс	
1	Частота	۲Q3	Мастер калибровки F6	
Старт		C	Отключить коррекцию	
	50 МГц	T	Используемые порты	
Cron		p	Опорты 1, 2	порт 2
Croit	20 ГГц		Конфигурация портов исследуеного устройства Соединитель: Калибровочный набор:	Описание набора:
Центр		1~	Порт 1: 3,5/SMA вилка ▼ НКММ-13-13Р №2196090535 ▼	 Соединители тип 3,5 мм
	10,025 ГГц	0	Порт 2: 3,5/SMA розетка ▼ НКММ-13-13Р №2196090535 •	• Соединители тип 3,5 мм
Полоса			Список калибровочных наборов	
	19,95 ПЦ	JU L	Pa	
Точек	504	MA	Шаг 1 из 7	
	501		Порт 1	
Сканиров	ание по списку	MO	- xx	
	Список		CH K3	
	Полиций оброр	- Th	Порт 2	•
	полный обзор	\otimes	КЗ Подключите нагрузку «ХХ (в)» (№2251090535) на порт 1.	<u> </u>
	Нулевой обзор		Порты 1,2	
	nynebon oodop		Проход	Мера отражения

Рис. 20. Установка частотного диапазона и проведение калибровки S-параметров для измерения смесителя «MD621»

 Подключить эталонный измеритель мощности к первому порту ВАЦ в плоскости калибровки S-параметров, рис. 21;

Рис. 21. Подключение измерителя мощности к ВАЦ

8. Провести калибровку выходной мощности ВАЦ в частотном диапазоне, включающем в себя входные и выходные частоты смесителя (50 МГц...20 ГГц), рис. 22;

Файл Калибровка Управление Д	иаграмма <u>Трасса</u>	<u>Маркер Профиль Вид С</u> правка
🛛 🐴 Мастер калибровки	F6	- (1) - 🕸 🕸 🗟
Отключить коррекцию		
Калибровка мощности	•	Коррекция выходной мощности
	ках Alt+F6	Коррекция приёмников
Параметры выходной мощности		Измеритель мощности
TOPT 1	TOPT 2	Статус: подключен
Значение на выходе: 0 дБм 🔔 >	0 дБм	Информация: Micran, PLS26, 1131180008, С. 1. 3
Смещение: 0 дБ	0 дБ	
Koppergas:	Включена	
Калибровка	Калибровка	(2)
Допустимое отклонение мощности:	0,5 дБ 🔶 🕨	Отключить
		ОК Отмена

Рис. 22. Проведение калибровки выходной мощности для измерения смесителя «MD621»

- 9. Собрать измерительную схему, изображенную на рис. 17;
- 10. В панели управления «Преобразования частоты» задать параметры гетеродина, рис. 23;

🔗 Преобразо	вание частоты	ŝ
Преобразование	вкл	f
Векторная коррекция	Пвыкл	p
Множитель/делитель	частоты Р4	Q
1	1	0
Старт гетеродина	З ГГц	Ш
Стоп гетеродина	19,95 ГГц	MA
-Множитель/делитель -1	частоты гетеродина 1	₩8
Смещение	0 Гц	
Старт/стоп ПЧ		Y
50 МГц	50 МГц	F
Отображать частоты ЗОНДИРОВАНИЯ	-	×۲

Рис. 23. Задание параметров преобразования частоты

Синхрон	низация	ŝ
Синхровход начало измерения	-	f
Инверсия синхровхода	Выкл	p
Синхровыход		2
Инверсия синхровыхода		
Длительность импульса	10 мкс	JUL MA
Синхроген. (высокий/низк 100 нс	ий уровень) 900 нс	₩¢
Опорный генератор автовыбор 🖕	10 МГц	₩
Дополнител	ю	

Рис. 24. Настройка генератора сигнала гетеродина

V01.0000

Ø	Управление	¢+ ×
Режим ра	аботы:	
Сканиро	вание по частоте	-
Режим за	пуска:	
Внешний	i.	-
Момент з	апуска:	
Следуюш	цая точка	•
Время уд	ержания точки:	
10	-	мкс 🔻
f	Частота	r+ ×
p	Мощность	¢- ×
C	Синхронизация	
0	Опорный генератор	¢+ ×

Ф Уп	равление 🕂 🛪
f (-lастота + ×
Тип развертки Линейный	🛇 Логарифмический
Старт:	
3 000	🗧 🖬 МГц 🔻
Стоп:	
19,95	🗧 🖬 МГц 🔻
Центр:	
1 509,975	🗧 🖬 МГц 🔻
Полоса:	
2 980,05	🗧 🖬 МГц 🔻
Количество точек:	
501	
Пол	ный диапазон
р м	ощность 4- х
Син)	кронизация 🕂 🗙
Опорн	ый генератор 🛛 🕂 🗙

Q	Управлени	ие	¢⊢ ×
f	Частота		₽ ×
p	Мощност	ъ	¢+ ×
C	Синхрониза	ция	¢+ ×
Режим с	инхровыхода:		
Захват Ф	АПЧ/АРМ		•
Инвер Длительн	тировать синхровы ность сигнала синхр	ход ровыход	a:
10		÷	мкс 🔻
Парамет	ры синхрогенератор	oa:	
1 1 P P C 1 P C 4	and the state of a second state of a second		
Длителы	ность импульса:		
Длителы 20	ность импульса:		HC -
Длителы 20 Период г	ность импульса; говторения импуль		HC 👻
Длителы 20 Период г 30	ность импульса: повторения импулы		HC v
Длителы 20 Период г 30	ность импульса: повторения импулы тировать синхровхо		HC *
Длителы 20 Период г 30 Пинвер Внешн	ность импульса: повторения импулы тировать синхровхо ее управление мош	а: а: ФД цностью	HC =
Длителы 20 Период г 30 Мнвер Внешн ©	ность импульса: повторения импулы тировать синхровхо ее управление мош Опорный гене	а а а а а а а а а а а а а а а а а а а	HC *
Длителы 20 Период г 30 Пинвер Внешн © Внешн Г Внешн	ность импульса: повторения импулы тировать синхровхс ее управление мощ Опорный генера ий опорный генера	а а: аратор тор	HC *
Длителья 20 Период г 30 Мнвер Внешн 10 МГц	ность импульса: повторения импулы тировать синхровхо ее управление мощ Опорный генера ий опорный генера	а: а: ф иностью гор	HC *
Длителы 20 Период г 30 Мнвер Внешн О Внешн 10 МГц Смещени	ность импульса: повторения импулы тировать синхровхо ее управление мош Опорный генера ий опорный генера не фазы выходного	а: а: уд иностью сигнала:	HC *

Рис. 25. Настройка синхронизации генератора «Г7М-20»

12. Создать измерительную трассу для коэффициента преобразования SC₂₁, рис. 26;

Рис. 26. Создание измерительной трассы для коэффициента преобразования SC₂₁

13. Результаты измерения представлены на рис. 27;

Маркеры	1	2	3	4	5	6	7	8	9
Позиция	4,000000 ГГц	6,000000 ГГц	8,000000 ГГц	10,000000 ГГц	12,000000 ГГц	14,000000 ГГц	16,000000 ГГц	18,000000 ГГц	20,000000 ГГц
Преобразование SC21	-10,67 дБ (!)	-8,25 дБ (!)	-6,289 дБ (!)	-6,331 дБ (!)	-7,209 дБ (!)	-8,162 дБ (!)	-8,618 дБ (!)	-8,649 дБ (!)	-8,639 дБ
Развязка S21	-23,01 дБ (!)	-25,81 дБ (!)	-20,813 дБ (!)	-24,709 дБ (!)	-35,894 дБ (!)	-41,877 дБ (!)	-45,211 дБ (!)	-35,140 дБ (!)	-38,268 дБ
КО от вторго порта S22	-7,23 дБ (!)	-9,13 дБ (!)	-18,061 дБ (!)	-24,022 дБ (!)	-17,073 дБ (!)	-24,321 дБ (!)	-17,915 дБ (!)	-17,082 дБ (!)	-18,250 дБ
КО от первого порта S11	-2,64 дБ (!)	-3,98 дБ (!)	-13,585 дБ (!)	-23,722 дБ (!)	-10,706 дБ (!)	-8,681 дБ (!)	-5,873 дБ (!)	-7,714 дБ (!)	-8,873 дБ

Рис. 27. Результат измерения смесителя «МD621» со скалярной калибровкой

Рис 28. Схема измерения смесителей с использованием внешнего гетеродина с векторной калибровкой:

1) фильтр ПЧ для опорного приёмника; 2) опорный смеситель; 3) делитель мощности; 4) генератор сигнала гетеродина;

5) согласующий аттенюатор; 6) калибровочный/исследуемый смеситель; 7) фильтр ПЧ для измерительного приёмника.

Параметры, которые схема позволяет измерить: C₂₁; b2c; ГВЗ; S₁₁; S₂₂; коэффициент преобразования на произвольной ПЧ.

Устройства и опции, необходимые для проведения измерения: ВАЦ «Панорама» с опцией «СПА»; внешний генератор сигнала гетеродина (Г7М, Р2М, РLG, либо другие в неуправляемом режиме); два дополнительных смесителя – «опорный» и «калибровочный»; аттенюатор (ослабление 3...10 дБ) для улучшения согласования первого порта; фильтр, пропускающий преобразованный сигнал промежуточной частоты и подавляющий паразитные сигналы; калибровочный набор или электронный калибратор; набор кабельных сборок.

Разность фаз коэффициента передачи S₂₁ некоторой цепи – это разность фаз гармонического сигнала на входе и на выходе цепи. В случае измерения разности фаз между сигналами до преобразования и после преобразования (на разных частотах) будем обозначать понятие «фаза» в кавычках.

Наклон «ФЧХ» C₂₁(f) – зависимость «фазы» C₂₁ от частоты, имеет физический смысл. Также как наклон ФЧХ S₂₁(f), он пропорционален групповому времени задержки (ГВЗ).

Физический смысл коэффициента преобразования C₂₁ появляется при возведении его в квадрат, т.е. при повторном прохождении сигнала через смеситель и преобразовании на частоту f₁. Например, если к выходу смесителя подключить идеальную отражающую нагрузку (с нулевой задержкой и коэффициентом отражения) или с помощью такого же смесителя выполнить обратное преобразование частоты f₂ и f₁, как показано на рис. 29.

Рис 29. Преобразование через смеситель

Изменение фазы сигнала, дважды прошедшего через смеситель, равно удвоенной «фазе» коэффициента преобразования С₂₁:

 $\Delta \phi = 2 \cdot \operatorname{Arg}(C_{21}).$

Пример 3.

Проведем измерение комплексного коэффициента преобразования С₂₁ смесителя «MD621» производства компании «Микран». Характеристики устройства приведены в таблице 3. Частотный диапазон входного сигнала (**RF**) = 4,5...20 ГГц, сигнала гетеродина (**LO**) = 3,6...19,1 ГГц, промежуточная частота (**IF**) = 900 МГц. Мощность зондирования 0 дБм.

Таблица 3. Технические характеристики смесителя «MD616».

Диапазон частот, ГГц	36	610	1017	1726
Потери преобразования, CL *, дБ	13	8	10	13
Сжатие на 1 дБ по входу, Р1 *, дБм	10	12	12	13
Интермодуляция третьего порядка, IIP3 **, дБм	20	16	20	22
Возвратные потери по входу RF, RL _{RF} *, дБ	5	6	6	5
Возвратные потери по входу LO, RL _{LO} *, дБ	5	6	5	5
Изоляция LO-RF, дБн	35	35	35	30
Изоляция RF-IF, дБн	15	20	20	20
Изоляция LO-IF, дБн	18	20	25	25

Для измерения будем использовать схему, приведенную на рис. 30. В качестве генератора сигнала гетеродина используем *синтезатор частот серии* «**Г7М-20**». В качестве «опорного» и «калибровочного» смесителя используем смесители «**MD621**». Фильтры промежуточной частоты – ППФ 900 МГц.

Рис. 30. Схема измерения смесителя «МD616» с векторной калибровкой:

фильтр ПЧ для опорного приёмника;
 опорный смеситель;
 делитель мощности;
 генератор сигнала гетеродина;
 осгласующий аттенюатор;
 калибровочный \ исследуемый смеситель;
 фильтр ПЧ для измерительного приёмника.

- 1. Подготовить ВАЦ к работе;
- 2. Запустить программное обеспечение Graphit;
- 3. Осуществить подключение к прибору, рис. 31;

Описание	В избраниев						
P4M-18/3 1102170230	r4m-18-1102170230.tetz	P4M-18/3	1102170230	Свободен	В изоранное		
P4M-18 1102080016	r4m-18-1102080016.tetz	P4M-18	1102080016	Занят			
P4M-18 1102099999	r4m-18-1102099999.tetz	P4M-18	1102099999	Занят			
P4213/4 1132190048	r4213-1132190048.tetz	P4213/4 P4213/6	1132190048	Занят	Повгорить поиск		
P4213/6 1132190055	r4213-1132190055.tetz		1132190055	Занят	Все приборы		
P4226/5 1133180038	r4226-1133180038.tetz	P4226/5	1133180038	Свободен			
P4226A 1133190021	r4226-1133190021.tetz	P4226A	1133190021	Свободен			
R4226 1133150001 r4226-1133150001.tetz		R4226	1133150001	Занят			
	Выберите прибор для подключ или перетащите запись в списо избранных приборов при помо	ения к щи мыши			Подключаться по умолчании		

Рис. 31. Подключение к ВАЦ

- 4. Сбросить настройки программного обеспечения Graphit по умолчанию, для этого нажать кнопку «Восстановить начальные параметры»
- 5. В панели управления «Мощность» установить параметры мощности зондирования 0 дБм, рис. 32;

р Мощноо	ть
Старт	f
Стоп	р
Центр	<u> </u>
	0 дБм
Полоса	M
Точек	MA
Управление аттенюаторами	~ &
ручное Аттенюатор генератора (пор	• • 1 / 2)
0 дБ	0 дБ
Аттенюаторы приёмников (п	орт 1 / 2)
0 дБ	0 дБ 📘

Рис. 32. Установка мощности зондирования для измерения смесителя «MD616»

6. В панели управления «Частота» установить частотный диапазон зондирования, рис. 33;

f	Частота	ŝ
Старт	4,5 ГГц	f
Стоп	20 ГГц	p
Центр	12,25 ГГц	Q O
Полоса	15,5 ГГц	
Точек	501	M
Сканирова	выкл Список	₩.
	Полный обзор	\otimes
	Нулевой обзор	F

Рис. 33. Установка частотного диапазона зондирования

7. Выбрать в главном меню Калибровка -> Мастер калибровки. Настроить мастер калибровки, рис. 34;

	кторный анализа	пор ценеи	[P4220/5 1133180039]		
аил	Калибровка Уг	правление	Диаграмма Трас		
1	Мастер кал	иоровки	Fo		
ß	Метод ка	пибров	ки		
🖲 Упра	вляем <mark>а</mark> я (по сцена	арию)			
🔘 Поль	зовательская (в п	роизвольно	м порядке)		
.	,		C ()		
	матическая (с эле	ктронным ка	алибратором)		
1 1	пастроик	а конол			
Использу Опорть	уемые порты ы 1, 2	a kenipi	Порт 1	🔘 порт 2	
Использу Опорть Конфигу	уемые порты ы 1, 2 грация портов исс	педуемого у	© порт 1 стройства	🔘 порт 2	
Использу (Опорть Конфигу	уемые порты ы 1, 2 рация портов исс Соединитель:	педуемого у	Порт 1 стройства Калибровочный набор:	Порт 2 Описание наб	бора:
Использу Порть Конфигу Порт 1:	уемые порты ы 1, 2 рация портов исс. Соединитель: 3,5/SMA вилка	ледуемого у	© порт 1 стройства Калибровочный набор: НКММ-13-13Р №219609053	Порт 2 Описание наб 5 Соединители	бора: 1 тип 3,5 мм
Использу Опорть Конфигу Порт 1: Порт 2:	уемые порты ы 1, 2 рация портов исс. Соединитель: 3,5/SMA вилка 3,5/SMA розетк	педуеного у	© порт 1 стройства Калибровочный набор: НКММ-13-13Р №219609053 НКММ-13-13Р №219609053	 Порт 2 Описание наб Соединители Соединители 	бора: 1 тип 3,5 мм 1 тип 3,5 мм
Использу Опорть Конфигу Порт 1: Порт 2:	уемые порты ы 1, 2 грация портов исс Соединитель: 3,5/SMA вилка 3,5/SMA розетк	педуемого уч	 порт 1 стройства Калибровочный набор: НКММ-13-13Р №219609053 НКММ-13-13Р №219609053 Список калибровочны 	 порт 2 Описание наборов 	бора: 1 тип 3,5 мм 1 тип 3,5 мм
Использу () порть Конфигу Порт 1: Порт 2:	уемые порты ы 1, 2 грация портов исс. Соединитель: 3,5/SMA вилка 3,5/SMA розетк Параметр	педуеного уч	 порт 1 стройства Калибровочный набор: НКММ-13-13Р №219609053 НКММ-13-13Р №219609053 Список калибровочны бровки (порты 1- 	Порт 2 Описание наб 5 • Соединители 5 • Соединители 100 к наборов 2)	бора: 1 тип 3,5 мм 1 тип 3,5 мм
Использу Опорть Конфигу Порт 1: Порт 2: Вариант	уемые порты ы 1, 2 рация портов исс Соединитель: 3,5/SMA вилка 3,5/SMA розетк Параметр калибровки:	педуемого уч а т ры кали Векторн	 порт 1 стройства Калибровочный набор: НКММ-13-13Р №219609053 НКММ-13-13Р №219609053 Список калибровочны Бровки (порты 1- калибровка SOLT 	 порт 2 Описание наб Соединители Соединители Соединители к наборов 2) 	5ора: 1 тип 3,5 мм 1 тип 3,5 мм

Рис. 34. Настройка мастера калибровки для измерения смесителя «MD616»

 Настроить параметры преобразования частоты в мастере калибровки, рис. 35. В открывшемся диалоговом окне поля для ввода «F1» и «P1» не доступны для изменения, и содержат диапазоны частот зондирующего сигнала первого порта. Чтобы изменить эти параметры, следует закрыть мастер калибровки и вернуться к шагу 6.

В полях ввода «Fr» и «Pr» задаётся диапазон частот и мощность внешнего генератора гетеродина. Коэффициенты преобразования a, b, c, d, определяющие значение преобразованной частоты задаются в соответствии с формулой:

$$f_2 = rac{a}{b} f_1 + rac{c}{d} f_{\Gamma} + f_{ ext{CM}}$$
 , где

f₁ – частота зондирующего сигнала и приёмников первого порта;

f₂ - частота зондирующего сигнала и приёмников второго порта;

 f_r – частота гетеродина (при отсутствии внешнего гетеродина множитель «с» задается равным нулю:

f_{см} – смещение частоты, представляющее дополнительную отстройку;

- а множитель частоты первого порта;
- **b** делитель частоты второго порта;
- с множитель частоты гетеродина;
- d делитель частоты гетеродина.

МИКРАН

В недоступных для изменения полях «F2» отображается диапазон преобразованных частот. В недоступном для изменения поле «P2» отображается мощность зондирования вторым портом, равная мощности зондирования первым портом плюс «Смещение мощности» для порта 2, задаваемое в окне «Конфигурация портов» (по умолчанию 0 дБ);

Рис. 35. Настройка параметров преобразования частоты в мастере калибровки

 Следуя указаниям мастера калибровки провести первые семь пунктов калибровки, рис. 36. Первые семь пунктов проводятся без использования «калибровочного» смесителя с помощью набора калибровочных мер или электронного калибратора;

🌽 Шаг 1	из 11	
Порт 1 XX K3 CH	Без смесителя	
Порт 2 — XX — K3 — CH Порты 1,2	Подключите нагрузку «XX (в)» (№2251090535) на порт 1.	
Порт 1 (смесит.) — XX — K3 — CH Порты 1.2 (смесит.)	С калибровочным смесителем	Мера отражения

Рис. 36. Этапы калибровки с преобразованием частоты

10. Собрать схему для калибровки с «калибровочным» смесителем, рис. 37.

Рис. 37. Калибровка с использованием «калибровочного» смесителя:

- фильтр ПЧ для опорного приёмника; 2) опорный смеситель; 3) делатель мощности; 4) генератор сигнала гетеродина;
 согласующий аттенюатор; 6) калибровочный смеситель; 7) фильтр ПЧ для измерительного приёмника.
- 11. Провести дальнейшие этапы калибровки S параметров с использованием «калибровочного смесителя» следуя указаниям мастера калибровки. «Калибровочный» смеситель должен работать в требуемом диапазоне частот, его коэффициент преобразования SC₂₁ должен быть более минус 10 дБ, его изоляция |S₂₁| должна быть не хуже -20 дБ. «Опорный» смеситель должен работать в требуемом частотном диапазоне;

12. Заменить «калибровочный» смеситель «MD621» на измеряемый «MD616», рис. 38;

Рис. 38. Замена «калибровочного» смесителя «MD621» на измеряемый «MD616»:

фильтр ПЧ для опорного приёмника; 2) опорный смеситель; 3) делитель мощности; 4) генератор сигнала гетеродина;
 согласующий аттенюатор; 6) калибровочный смеситель; 7) фильтр ПЧ для измерительного приёмника; 8) измеряемый смеситель «МD616».

13. Создать измерительную трассу для комплексного коэффициента преобразования, рис. 39. Результаты измерения приведены на рис. 40;

Рис. 39. Создание трассы для комплексного коэффициента преобразования С21

Маркеры	1	2	3	4	5	6	7	8	9
Позиция	4,600000 ГГц	6,000000 ГГц	8,000000 ГГц	10,000000 ГГц	12,000000 ГГц	14,000000 ГГц	16,000000 ГГц	18,000000 ГГц	20,000000 ГГц
Vector	-12,399 дБ (!)	-10,638 дБ (!)	-10,244 дБ (!)	-11,303 дБ (!)	-12,827 дБ (!)	-11,257 дБ (!)	-11,777 дБ (!)	-10,891 дБ (!)	-10,421 дБ
/ector_Phase	-16,216 ° (!)	-39,691 ° (!)	-140,156 ° (!)	138,324 ° (!)	116,912 ° (!)	-2,850 ° (!)	-100,805 ° (!)	-165,913 ° (!)	134,324 °

Рис. 40. Результаты измерения комплексного коэффициента преобразования С21 смесителя «МD616»